Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
1.
Article in English | MEDLINE | ID: mdl-38546531

ABSTRACT

BACKGROUND: The proliferation of Novel Psychoactive Substances (NPS) in the drug market raises concerns about uncertainty on their pharmacological profile and the health hazard linked to their use. Within the category of synthetic stimulant NPS, the phenethylamine 2-Cl-4,5-methylenedioxymethamphetamine (2-Cl-4,5-MDMA) has been linked to severe intoxication requiring hospitalization. Thereby, the characterization of its pharmacological profile is urgently warranted. METHODS: By in vivo brain microdialysis in adolescent and adult male rats we investigated the effects of 2-Cl-4,5-MDMA on dopamine (DA) and serotonin (5-HT) neurotransmission in two brain areas critical for the motivational and reinforcing properties of drugs, the nucleus accumbens (NAc) shell and the medial prefrontal cortex (mPFC). Moreover, we evaluated the locomotor and stereotyped activity induced by 2-Cl-4,5-MDMA, and the emission of 50-kHz ultrasonic vocalizations (USVs) to characterize its affective properties. RESULTS: 2-Cl-4,5-MDMA increased dialysate DA and 5-HT in a dose-, brain area-, and age-dependent manner. Notably, 2-Cl-4,5-MDMA more markedly increased dialysate DA in the NAc shell and mPFC of adult than adolescent rats, while the opposite was observed on dialysate 5-HT in the NAc shell, with adolescent rats being more responsive. Furthermore, 2-Cl-4,5-MDMA stimulated locomotion and stereotyped activity in both adolescent and adult rats, although to a greater extent in adolescents. Finally, 2-Cl-4,5-MDMA did not stimulate 50-kHz USV emissions. CONCLUSIONS: This is the first pharmacological characterization of 2-Cl-4,5-MDMA demonstrating that its neurochemical and behavioral effects may differ between adolescence and adulthood. These preclinical data could help understanding the central effects of 2-Cl-4,5-MDMA, by increasing awareness on possible health damage in users.

2.
Neural Regen Res ; 19(9): 1908-1918, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38227515

ABSTRACT

Preclinical and clinical studies indicate that psychostimulants, in addition to having abuse potential, may elicit brain dysfunctions and/or neurotoxic effects. Central toxicity induced by psychostimulants may pose serious health risks since the recreational use of these substances is on the rise among young people and adults. The present review provides an overview of recent research, conducted between 2018 and 2023, focusing on brain dysfunctions and neurotoxic effects elicited in experimental models and humans by amphetamine, cocaine, methamphetamine, 3,4-methylenedioxymethamphetamine, methylphenidate, caffeine, and nicotine. Detailed elucidation of factors and mechanisms that underlie psychostimulant-induced brain dysfunction and neurotoxicity is crucial for understanding the acute and enduring noxious brain effects that may occur in individuals who use psychostimulants for recreational and/or therapeutic purposes.

3.
Int J Neuropsychopharmacol ; 27(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38174899

ABSTRACT

BACKGROUND: Rats emit 50-kHz ultrasonic vocalizations (USVs) in response to nonpharmacological and pharmacological stimuli, with addictive psychostimulants being the most effective drugs that elicit calling behavior in rats. Earlier investigations found that dopamine D1-like and D2-like receptors modulate the emission of 50-kHz USVs stimulated in rats by the acute administration of addictive psychostimulants. Conversely, information is lacking on how dopamine D1-like and D2-like receptors modulate calling behavior in rats that are repeatedly treated with addictive psychostimulants. METHODS: We evaluated the emission of 50-kHz USVs in rats repeatedly treated (×5 on alternate days) with amphetamine (1 mg/kg, i.p.) either alone or together with (1) SCH 23390 (0.1-1 mg/kg, s.c.), a dopamine D1 receptor antagonist; (2) raclopride (0.3-1 mg/kg, s.c.), a selective dopamine D2 receptor antagonist; or (3) a combination of SCH 23390 and raclopride (0.1 + 0.3 mg/kg, s.c.). Calling behavior of rats was recorded following pharmacological treatment, as well as in response to the presentation of amphetamine-paired cues and to amphetamine challenge (both performed 7 days after treatment discontinuation). RESULTS: Amphetamine-treated rats displayed a sensitized 50-kHz USV emission during repeated treatment, as well as marked calling behavior in response to amphetamine-paired cues and to amphetamine challenge. Antagonism of D1 or D2 receptors either significantly suppressed or attenuated the emission of 50-kHz USVs in amphetamine-treated rats, with a maximal effect after synergistic antagonism of both receptors. CONCLUSIONS: These results shed further light on how dopamine transmission modulates the emission of 50-kHz USVs in rats treated with psychoactive drugs.


Subject(s)
Amphetamine , Central Nervous System Stimulants , Rats , Animals , Amphetamine/pharmacology , Dopamine , Dopamine Antagonists/pharmacology , Raclopride , Ultrasonics , Vocalization, Animal , Central Nervous System Stimulants/pharmacology
6.
Eur J Neurosci ; 57(12): 2062-2096, 2023 06.
Article in English | MEDLINE | ID: mdl-36889803

ABSTRACT

Mice and rats emit ultrasonic vocalizations (USVs), which may express their arousal and emotional states, to communicate with each other. There is continued scientific effort to better understand the functions of USVs as a central element of the rodent behavioral repertoire. However, studying USVs is not only important because of their ethological relevance, but also because they are widely applied as a behavioral readout in various fields of biomedical research. In mice and rats, a large number of experimental models of brain disorders exist and studying the emission of USVs in these models can provide valuable information about the health status of the animals and the effectiveness of possible interventions, both environmental and pharmacological. This review (i) provides an updated overview of the contexts in which ultrasonic calling behaviour of mice and rats has particularly high translational value, and (ii) gives some examples of novel approaches and tools used for the analysis of USVs in mice and rats, combining qualitative and quantitative methods. The relevance of age and sex differences as well as the importance of longitudinal evaluations of calling and non-calling behaviour is also discussed. Finally, the importance of assessing the communicative impact of USVs in the receiver, that is, through playback studies, is highlighted.


Subject(s)
Ultrasonics , Vocalization, Animal , Female , Rats , Animals , Male , Neuropharmacology , Emotions , Rodentia
7.
Front Psychiatry ; 14: 1142265, 2023.
Article in English | MEDLINE | ID: mdl-36798528
8.
Cells ; 11(17)2022 08 24.
Article in English | MEDLINE | ID: mdl-36078036

ABSTRACT

Parkinson's disease (PD) is a complex pathology causing a plethora of non-motor symptoms besides classical motor impairments, including cognitive disturbances. Recent studies in the PD human brain have reported microgliosis in limbic and neocortical structures, suggesting a role for neuroinflammation in the development of cognitive decline. Yet, the mechanism underlying the cognitive pathology is under investigated, mainly for the lack of a valid preclinical neuropathological model reproducing the disease's motor and non-motor aspects. Here, we show that the bilateral intracerebral infusion of pre-formed human alpha synuclein oligomers (H-αSynOs) within the substantia nigra pars compacta (SNpc) offers a valid model for studying the cognitive symptoms of PD, which adds to the classical motor aspects previously described in the same model. Indeed, H-αSynOs-infused rats displayed memory deficits in the two-trial recognition task in a Y maze and the novel object recognition (NOR) test performed three months after the oligomer infusion. In the anterior cingulate cortex (ACC) of H-αSynOs-infused rats the in vivo electrophysiological activity was altered and the expression of the neuron-specific immediate early gene (IEG) Npas4 (Neuronal PAS domain protein 4) and the AMPA receptor subunit GluR1 were decreased. The histological analysis of the brain of cognitively impaired rats showed a neuroinflammatory response in cognition-related regions such as the ACC and discrete subareas of the hippocampus, in the absence of any evident neuronal loss, supporting a role of neuroinflammation in cognitive decline. We found an increased GFAP reactivity and the acquisition of a proinflammatory phenotype by microglia, as indicated by the increased levels of microglial Tumor Necrosis Factor alpha (TNF-α) as compared to vehicle-infused rats. Moreover, diffused deposits of phospho-alpha synuclein (p-αSyn) and Lewy neurite-like aggregates were found in the SNpc and striatum, suggesting the spreading of toxic protein within anatomically interconnected areas. Altogether, we present a neuropathological rat model of PD that is relevant for the study of cognitive dysfunction featuring the disease. The intranigral infusion of toxic oligomeric species of alpha-synuclein (α-Syn) induced spreading and neuroinflammation in distant cognition-relevant regions, which may drive the altered neuronal activity underlying cognitive deficits.


Subject(s)
Cognitive Dysfunction , Parkinson Disease , Animals , Cognitive Dysfunction/metabolism , Gyrus Cinguli/metabolism , Gyrus Cinguli/pathology , Humans , Neuroinflammatory Diseases , Neurons/metabolism , Parkinson Disease/metabolism , Rats , Substantia Nigra/metabolism , alpha-Synuclein/metabolism
10.
Front Pharmacol ; 12: 713486, 2021.
Article in English | MEDLINE | ID: mdl-34512343

ABSTRACT

3,4-Methylenedioxymethamphetamine (MDMA, "ecstasy") is an amphetamine-related drug that may damage the dopaminergic nigrostriatal system. To investigate the mechanisms that sustain this toxic effect and ascertain their sex-dependence, we evaluated in the nigrostriatal system of MDMA-treated (4 × 20 mg/kg, 2 h apart) male and female mice the activity of superoxide dismutase (SOD), the gene expression of SOD type 1 and 2, together with SOD1/2 co-localization with tyrosine hydroxylase (TH)-positive neurons. In the same mice and brain areas, activity of glutathione peroxidase (GPx) and of ß2/ß5 subunits of the ubiquitin-proteasome system (UPS) were also evaluated. After MDMA, SOD1 increased in striatal TH-positive terminals, but not nigral neurons, of males and females, while SOD2 increased in striatal TH-positive terminals and nigral neurons of males only. Moreover, after MDMA, SOD1 gene expression increased in the midbrain of males and females, whereas SOD2 increased only in males. Finally, MDMA increased the SOD activity in the midbrain of females, without affecting GPx activity, decreased the ß2/ß5 activities in the striatum of males and the ß2 activity in the midbrain of females. These results suggest that the mechanisms of MDMA-induced neurotoxic effects are sex-dependent and dopaminergic neurons of males could be more sensitive to SOD2- and UPS-mediated toxic effects.

11.
Brain Sci ; 11(8)2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34439672

ABSTRACT

Rats emit ultrasonic vocalizations (USVs) in situations with emotional valence, and USVs have also been proposed as a marker for memories conditioned to those situations. This study investigated whether USV emissions can predict and/or be associated with the behavior of rats in tests that evaluate unconditioned memory. To this end, rats were subjected to "tickling", a procedure of heterospecific play that has emotional valence and elicits the emission of USVs, and afterwards evaluated in the novel object recognition test (NOR) and in the single trial continuous spontaneous alternation behavior (SAB) test in a Y maze. The number of 22-kHz USVs (aversive) and 50-kHz USVs (appetitive) emitted in response to tickling and during NOR and SAB tests were scored, and the correlations among them and with rats' behavior evaluated. Rats emitted 50-kHz USVs, but not 22-kHz USVs, during the NOR and SAB tests, and such calling behavior was not linked with the behavioral readouts indicative of memory function in either test. However, rats that prevalently emitted 22-kHz USVs in response to tickling displayed an impaired NOR performance. These findings suggest that measuring the emission of USVs could be of interest in studies of unconditioned memory, at least with regard to 22-kHz USVs.

12.
Br J Pharmacol ; 178(17): 3476-3497, 2021 09.
Article in English | MEDLINE | ID: mdl-33837969

ABSTRACT

BACKGROUND AND PURPOSE: Spice/K2 herbal mixtures, containing synthetic cannabinoids such as JWH-018, have been marketed as marijuana surrogates since 2004. JWH-018 has cannabinoid CB1 receptor-dependent reinforcing properties and acutely increases dopaminergic transmission selectively in the NAc shell. Here, we tested the hypothesis that repeated administration of JWH-018 (i) modulates behaviour, (ii) affects dopaminergic transmission and its responsiveness to motivational stimuli, and (iii) is associated with a neuroinflammatory phenotype. EXPERIMENTAL APPROACH: Rats were administered with JWH-018 once a day for 14 consecutive days. We then performed behavioural, electrophysiological, and neurochemical evaluation at multiple time points after drug discontinuation. KEY RESULTS: Repeated JWH-018 exposure (i) induced anxious and aversive behaviours, transitory attentional deficits, and withdrawal signs; (ii) decreased spontaneous activity and number of dopamine neurons in the VTA; and (iii) reduced stimulation of dopaminergic transmission in the NAc shell while potentiating that in the NAc core, in response to acute JWH-018 challenge. Moreover, (iv) we observed a decreased dopamine sensitivity in the NAc shell and core, but not in the mPFC, to a first chocolate exposure; conversely, after a second exposure, dialysate dopamine fully increased in the NAc shell and core but not in the mPFC. Finally, selected dopamine brain areas showed (v) astrogliosis (mPFC, NAc shell and core, VTA), microgliosis (NAc shell and core), and downregulation of CB1 receptors (mPFC, NAc shell and core). CONCLUSION AND IMPLICATIONS: Repeated exposure to JWH-018 may provide a useful model to clarify the detrimental effects of recurring use of Spice/K2 drugs.


Subject(s)
Dopamine , Naphthalenes , Animals , Indoles/pharmacology , Naphthalenes/pharmacology , Neuroglia , Nucleus Accumbens , Rats
13.
J Neurovirol ; 27(2): 325-333, 2021 04.
Article in English | MEDLINE | ID: mdl-33710598

ABSTRACT

The incidence of HIV-associated neurocognitive disorder (HAND) continues despite the introduction of combination antiretroviral drugs (cART). Several studies have reported the neurotoxicity of individual antiretroviral drugs (monotherapy), while the common approach for HIV treatment is through cART. Hence, the current study investigated the effects of long-term exposure to cART on cognitive function, oxidative damage, autophagy, and neuroplasticity in the hippocampus of mice. Female Balb/c mice received a once-a-day oral dose of cART composed of emtricitabine + tenofovir disoproxil fumarate or vehicle for 8 weeks. On week 7 of drug administration, all mice were assessed for spatial learning in the Morris water maze (MWM), and then on week 8, mice were sacrificed, and hippocampal tissue dissected from the brain. For biochemical analyses, we measured the concentration of 4-hydroxynonenal, and the expression of autophagic marker LC3B, synaptophysin, and brain-derived neurotrophic factor (BDNF) in the hippocampus. Our results showed that cART exposure increased escape latency in the MWM test. The cART-treated mice also showed increased 4-hydroxynonenal concentration and expression of LC3B. Furthermore, cART treatment decreased the expression of synaptophysin and BDNF. These findings further support the evidence that cART may be neurotoxic and therefore may play a role in the neuropathogenesis of HAND.


Subject(s)
Anti-HIV Agents/toxicity , Cognition Disorders/chemically induced , Emtricitabine, Rilpivirine, Tenofovir Drug Combination/toxicity , Hippocampus/drug effects , Neuronal Plasticity/drug effects , Animals , Female , Maze Learning/drug effects , Mice , Mice, Inbred BALB C
14.
Neurosci Lett ; 749: 135733, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33592304

ABSTRACT

The emission of ultrasonic vocalizations (USVs) is thought to communicate the behavioral and emotional states elicited in rodents by social and non-social stimuli. On this basis, studies of psychopharmacology in rats are increasingly utilizing USVs as a behavioral marker to evaluate the effects of drugs on the emotional state. Conversely, very limited information is available as to whether psychoactive drugs influence USV emissions in mice. To provide new insights in this respect, we evaluated the emission of USVs in C57BL/6J mice subjected to repeated treatment with the dopaminergic psychostimulant of abuse amphetamine. Mice were first allowed to perform social contacts in dyads, and 2 days later they received amphetamine (1-4 mg/kg, i.p.) in a test cage (× 5 administrations) on alternate days. Seven days after treatment discontinuation, mice were re-exposed to the test cage to evaluate whether the presentation of drug-paired environmental cues elicited calling behavior, and thereafter received an amphetamine challenge. An additional group of animals received the dopamine receptor agonist apomorphine (1-4 mg/kg, i.p.), to further clarify the role of dopamine transmission in calling behavior of mice. C57BL/6J mice emitted USVs during social contacts, but did not significantly vocalize after amphetamine administration, in response to amphetamine-paired environmental cues, and after apomorphine administration. These results indicate that C57BL/6J mice may respond differently to social and pharmacological stimuli in terms of USV emissions, and may lay the foundation for future studies aimed at clarifying whether USVs may be a useful behavioral marker in studies of psychopharmacology in mice.


Subject(s)
Amphetamine/pharmacology , Central Nervous System Stimulants/pharmacology , Ultrasonics , Vocalization, Animal/drug effects , Animals , Apomorphine/pharmacology , Cues , Dopamine Agonists/pharmacology , Mice, Inbred C57BL , Psychotropic Drugs/pharmacology
15.
Article in English | MEDLINE | ID: mdl-33242502

ABSTRACT

Dopamine replacement therapy used in Parkinson's disease (PD) may induce alterations in the emotional state that can underlie the manifestation of iatrogenic psychiatric-like disturbances. The preclinical investigation of these disturbances is limited, also because few reliable paradigms are available to study the affective properties of dopaminomimetic drugs in parkinsonian animals. To provide a relevant experimental tool in this respect, we evaluated whether dopaminomimetic drugs modified the emission of 50-kHz ultrasonic vocalizations (USVs), a behavioral marker of positive affect, in rats bearing a unilateral lesion with 6-hydroxydopamine in the medial forebrain bundle. Apomorphine (2 or 4 mg/kg, i.p.), L-3,4-dihydroxyphenilalanine (L-DOPA, 6 or 12 mg/kg, i.p.), or pramipexole (2 or 4 mg/kg, i.p.) were administered in a test cage (× 5 administrations) on alternate days. Seven days after treatment discontinuation, rats were re-exposed to the test cage to measure conditioned calling behavior and thereafter received a drug challenge. Hemiparkinsonian rats treated with either apomorphine or L-DOPA, but not pramipexole, markedly vocalized during repeated treatment and after challenge, and showed conditioned calling behavior. Moreover, apomorphine, L-DOPA and pramipexole elicited different patterns of 50-kHz USV emissions and rotational behavior, indicating that calling behavior in hemiparkinsonian rats treated with dopaminomimetic drugs is not a byproduct of motor activation. Taken together, these results suggest that measuring 50-kHz USV emissions may be a relevant experimental tool for studying how dopaminomimetic drugs modify the affective state in parkinsonian rats, with possible implications for the preclinical investigation of iatrogenic psychiatric-like disturbances in PD.


Subject(s)
Dopamine Agents/therapeutic use , Parkinsonian Disorders/drug therapy , Vocalization, Animal/drug effects , Affect/drug effects , Animals , Apomorphine/therapeutic use , Desipramine/therapeutic use , Disease Models, Animal , Levodopa/therapeutic use , Male , Parkinsonian Disorders/chemically induced , Pramipexole/therapeutic use , Rats , Rats, Sprague-Dawley , Ultrasonic Waves
16.
Neurotoxicology ; 83: 1-13, 2021 03.
Article in English | MEDLINE | ID: mdl-33338551

ABSTRACT

Clinical and preclinical evidence indicates that prenatal exposure to glucocorticoids may induce detrimental effects in the offspring, including reduction in fetal growth and alterations in the CNS. On this basis, the present study investigated whether in utero exposure to high levels of glucocorticoids is a risk factor that may lead to an exacerbation of the central noxious effects induced by psychoactive drugs consumed later in life. To this end, pregnant C57BL6/J dams were treated with dexamethasone (DEX, 0.05 mg/kg per day) from gestational day 14 until delivery. Thereafter, the male offspring were evaluated to ascertain the magnitude of dopaminergic damage, astrogliosis and microgliosis elicited in the nigrostriatal tract by the amphetamine-related drug 3,4--methylenedioxymethamphetamine (MDMA, 4 × 20 mg/kg, 2 h apart, sacrificed 48 h later) administered at either adolescence or adulthood. Immunohistochemistry was performed in the substantia nigra pars compacta (SNc) and striatum, to evaluate dopaminergic degeneration by measuring tyrosine hydroxylase (TH), as well as astrogliosis and microgliosis by measuring glial fibrillary acidic protein (GFAP) and ionized calcium-binding adapter molecule 1 (IBA-1), respectively. Moreover, immunohistochemistry was used to ascertain the co-localization of IBA-1 with either the pro-inflammatory interleukin (IL) IL-1ß or the anti-inflammatory IL IL-10, in order to determine the microglial phenotype. In utero administration of DEX induced dopaminergic damage by decreasing the density of TH-positive fibers in the striatum, although only in adult mice. MDMA administration induced dopaminergic damage and glia activation in the nigrostriatal tract of adolescent and adult mice. Mice exposed to DEX in utero and treated with MDMA later in life showed a more pronounced loss of dopaminergic neurons (adolescent mice) and astrogliosis (adolescent and adult mice) in the SNc, compared with control mice. These results suggest that prenatal exposure to glucocorticoids may induce an age-dependent and persistent increase in the susceptibility to central toxicity of amphetamine-related drugs used later in life.


Subject(s)
Brain/drug effects , Dexamethasone/toxicity , Dopaminergic Neurons/drug effects , Glucocorticoids/toxicity , Neuroglia/drug effects , Neurotoxicity Syndromes/etiology , Prenatal Exposure Delayed Effects , Age Factors , Animals , Brain/metabolism , Brain/pathology , Calcium-Binding Proteins/metabolism , Disease Models, Animal , Disease Progression , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Female , Gestational Age , Glial Fibrillary Acidic Protein/metabolism , Gliosis , Interleukin-10/metabolism , Interleukin-1beta/metabolism , Male , Maternal Exposure , Mice, Inbred C57BL , Microfilament Proteins/metabolism , N-Methyl-3,4-methylenedioxyamphetamine , Nerve Degeneration , Neuroglia/metabolism , Neuroglia/pathology , Neurotoxicity Syndromes/metabolism , Neurotoxicity Syndromes/pathology , Pregnancy , Tyrosine 3-Monooxygenase/metabolism
17.
Brain Sci ; 10(12)2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33353194

ABSTRACT

Since the early 2000s, herbal mixtures containing synthetic cannabinoids (SCs), broadly known as Spice/K2, have been marketed as a legal marijuana surrogate and have become very popular among adolescents. Adolescence is a critical period of development, which is associated with an increased vulnerability to the central effects of drugs. Despite growing concerns about the negative effects of the use of SCs, newly synthetized compounds are increasingly detected in drugs seized by the authorities, posing a serious threat to public health. 5F-MDMB-PICA has been recently detected and classified as a highly potent agonist of CB1 and CB2 cannabinoid receptors. Here, we first investigated the rewarding properties of 5F-MDMB-PICA in C57BL/6 adolescent and adult mice by in vivo brain microdialysis. Data showed that acute administration of a selected dose of 5F-MDMB-PICA (0.01 mg/kg i.p.) stimulates the release of dopamine in the nucleus accumbens shell of adolescent, but not of adult, mice. To further investigate the consequences of repeated exposure to this dose of 5F-MDMB-PICA, a separate group of adolescent mice was treated for 14 consecutive days and evaluated for behavioral abnormalities at adulthood, starting from 7 days after drug discontinuation. Data showed that this group of adult mice displayed an anxiety-like and compulsive-like state as revealed by an altered performance in the marble burying test. Our study suggests an alarming vulnerability of adolescent mice to the effects of 5F-MDMB-PICA. These findings provide a useful basis for understanding and evaluating both early and late detrimental effects that may derive from the use of SCs during adolescence.

18.
mSystems ; 5(5)2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32934117

ABSTRACT

Parkinson's disease is a neurodegenerative disorder characterized by the accumulation of intracellular aggregates of misfolded alpha-synuclein along the cerebral axis. Several studies report the association between intestinal dysbiosis and Parkinson's disease, although a cause-effect relationship remains to be established. Herein, the gut microbiota composition of 64 Italian patients with Parkinson's disease and 51 controls was determined using a next-generation sequencing approach. A real metagenomics shape based on gas chromatography-mass spectrometry was also investigated. The most significant changes within the Parkinson's disease group highlighted a reduction in bacterial taxa, which are linked to anti-inflammatory/neuroprotective effects, particularly in the Lachnospiraceae family and key members, such as Butyrivibrio, Pseudobutyrivibrio, Coprococcus, and Blautia The direct evaluation of fecal metabolites revealed changes in several classes of metabolites. Changes were seen in lipids (linoleic acid, oleic acid, succinic acid, and sebacic acid), vitamins (pantothenic acid and nicotinic acid), amino acids (isoleucine, leucine, phenylalanine, glutamic acid, and pyroglutamic acid) and other organic compounds (cadaverine, ethanolamine, and hydroxy propionic acid). Most modified metabolites strongly correlated with the abundance of members belonging to the Lachnospiraceae family, suggesting that these gut bacteria correlate with altered metabolism rates in Parkinson's disease.IMPORTANCE To our knowledge, this is one of the few studies thus far that correlates the composition of the gut microbiota with the direct analysis of fecal metabolites in patients with Parkinson's disease. Overall, our data highlight microbiota modifications correlated with numerous fecal metabolites. This suggests that Parkinson's disease is associated with gut dysregulation that involves a synergistic relationship between gut microbes and several bacterial metabolites favoring altered homeostasis. Interestingly, a reduction of short-chain fatty acid (SCFA)-producing bacteria influenced the shape of the metabolomics profile, affecting several metabolites with potential protective effects in the Parkinson group. On the other hand, the extensive impact that intestinal dysbiosis has at the level of numerous metabolic pathways could encourage the identification of specific biomarkers for the diagnosis and treatment of Parkinson's disease, also in light of the effect that specific drugs have on the composition of the intestinal microbiota.

19.
Front Aging Neurosci ; 12: 118, 2020.
Article in English | MEDLINE | ID: mdl-32477098

ABSTRACT

Twelve-month-old male mice expressing the human A53T variant of α-synuclein (A53T) develop dopamine neuron degeneration, neuroinflammation, and motor deficits, along with dysfunctions of the mitochondrial Na+-Ca2+ exchanger (NCX) isoforms 1 (NCX1) and 3 (NCX3) in the nigrostriatal system. Since gender is thought to play a role in the etiology of Parkinson's disease (PD), we characterized neurochemical and behavioral alterations in 12-month-old female A53T transgenic mice. We investigated the presence of dopaminergic degeneration, astrogliosis and microgliosis using immunohistochemistry for tyrosine hydroxylase (TH), glial fibrillary acidic protein (GFAP) and ionized calcium-binding adaptor molecule-1 (IBA-1) in both the substantia nigra pars compacta (SNc) and striatum. In the same regions, we also evaluated the co-localization of NCX1 in cells positive for IBA-1 and the co-localization of NCX3 in TH-positive neurons and fibers. Furthermore, in both male and female mice, we performed motor (beam walking and pole tests) and memory [novel object recognition (NOR) and spontaneous alternation] tasks, together with tests to evaluate peripheral deficits (olfactory and stool collection tests). Female A53T transgenic mice displayed degeneration of nigral dopaminergic neurons, but neither microgliosis nor astrogliosis in the SNc and striatum. Moreover, female A53T transgenic mice displayed co-localization between NCX1 and IBA-1 positive cells in the striatum but not SNc, whereas NCX3 did not co-localize with either TH-positive terminals or neuronal bodies in the nigrostriatal system. Furthermore, female A53T transgenic mice showed increased crossing time in the beam walking test, but no impairments in the pole or memory tests, and in tests that evaluated peripheral deficits, whereas male A53T transgenic mice displayed motor, memory and peripheral deficits. Immunohistochemical and behavioral results obtained here in the female mice differ from those previously observed in males, and suggest a dissimilar influence of NCX1 and NCX3 on dopaminergic function in female and male A53T transgenic mice, strengthening the validity of these mice as a model for studying the etiological factors of PD.

20.
Biomolecules ; 10(5)2020 05 18.
Article in English | MEDLINE | ID: mdl-32443397

ABSTRACT

Treatments for cognitive impairments associated with neuropsychiatric disorders, such as attention deficit hyperactivity disorder or narcolepsy, aim at modulating extracellular dopamine levels in the brain. CE-123 (5-((benzhydrylsulfinyl)methyl) thiazole) is a novel modafinil analog with improved specificity and efficacy for dopamine transporter inhibition that improves cognitive and motivational processes in experimental animals. We studied the neuropharmacological and behavioral effects of the S-enantiomer of CE-123 ((S)-CE-123) and R-modafinil in cognitive- and reward-related brain areas of adult male rats. In vivo single unit recordings in anesthetized animals showed that (S)-CE-123, but not R-modafinil, dose-dependently (1.25 to 10 mg/kg i.v.) reduced firing of pyramidal neurons in the infralimbic/prelimbic (IL/PrL) cortex. Neither compound the affected firing activity of ventral tegmental area dopamine cells. In freely moving animals, (S)-CE-123 (10 mg/kg i.p.) increased extracellular dopamine levels in the IL/PrL, with different patterns when compared to R-modafinil (10 mg/kg i.p.); in the nucleus accumbens shell, a low and transitory increase of dopamine was observed only after (S)-CE-123. Neither (S)-CE-123 nor R-modafinil initiated the emission of 50-kHz ultrasonic vocalizations, a behavioral marker of positive affect and drug-mediated reward. Our data support previous reports of the procognitive effects of (S)-CE-123, and show a minor impact on reward-related dopaminergic areas.


Subject(s)
Benzhydryl Compounds/pharmacology , Cognition , Dopamine Agents/pharmacology , Dopamine/metabolism , Limbic System/drug effects , Nootropic Agents/pharmacology , Prefrontal Cortex/drug effects , Action Potentials , Animals , Dopamine Plasma Membrane Transport Proteins/antagonists & inhibitors , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/physiology , Limbic System/physiology , Male , Prefrontal Cortex/cytology , Prefrontal Cortex/physiology , Pyramidal Cells/drug effects , Pyramidal Cells/metabolism , Pyramidal Cells/physiology , Rats , Rats, Sprague-Dawley , Reward
SELECTION OF CITATIONS
SEARCH DETAIL
...